
Copyright © 2004 Clarkware Consulting, Inc.

Mike Clark
www.clarkware.com

A Dozen Ways to Get the
Testing Bug

2Copyright © 2004 Clarkware Consulting, Inc.

Rocky Mountain Software Symposium

May 21-23, 2004

http://nofluffjuststuff.com

3Copyright © 2004 Clarkware Consulting, Inc.

Learning Was Painful

4Copyright © 2004 Clarkware Consulting, Inc.

Why Even Try?

• I don’t have time to test

• Testing is boring

• I’m afraid changes will break something

• My designs don’t always work

• I have a tendency to over-engineer

5Copyright © 2004 Clarkware Consulting, Inc.

Why I’m Now Hooked

Testing helps me write better code, faster!

6Copyright © 2004 Clarkware Consulting, Inc.

What I Mean By Testing

• Tests that support programming

• Clarify thinking

• (Find bugs)

• What programmers do

• Not tests that verify a product

• Uncover errors and omissions

• What “QA” does

7Copyright © 2004 Clarkware Consulting, Inc.

1. Let Computers Do Boring Stuff

• Replace visual inspection with automated checking

• Automation isn’t testing, but it gives us time to test

• Computers are bored

• Go after low-hanging fruit first

8Copyright © 2004 Clarkware Consulting, Inc.

Manual Testing

 public static void main(String args[]) {

 Spreadsheet sheet = new Spreadsheet();

 System.out.println("Cell reference:");
 sheet.put("A1", "5");
 sheet.put("A2", "=A1");
 System.out.println("A2 = " + sheet.get("A2"));

 System.out.println("\nFormula calculation:");
 sheet.put("A1", "5");
 sheet.put("A2", "2");
 sheet.put("B1", "=A1*(A1-A2)+A2/3");
 System.out.println("B1 = " + sheet.get("B1"));
 }

Cell reference:
A2 = 5

Formula calculation:
B1 = 15

9Copyright © 2004 Clarkware Consulting, Inc.

JUnit

• A computer’s taskmaster

• De facto unit-testing tool for Java

• Tests are self-checking and unambiguous

• Simple to use

10Copyright © 2004 Clarkware Consulting, Inc.

Computer-Checked Assertions

 assertTrue(boolean condition)
 assertFalse(boolean condition)

 assertEquals(Object expected, Object actual)

 assertEquals(float expected, float actual, float delta)

 assertSame(Object expected, Object actual)
 assertNotSame(Object expected, Object actual)

 assertNull(Object o)
 assertNotNull(Object o)

 fail([String message])

11Copyright © 2004 Clarkware Consulting, Inc.

Automated Testing

 public class SpreadsheetTest extends TestCase {

 public void testCellReference() {
 Spreadsheet sheet = new Spreadsheet();
 sheet.put("A1", "5");
 sheet.put("A2", "=A1");
 assertEquals("5", sheet.get("A2"));
 }

 public void testFormulaCalculation() {
 Spreadsheet sheet = new Spreadsheet();
 sheet.put("A1", "5");
 sheet.put("A2", "2");
 sheet.put("B1", "=A1*(A1-A2)+A2/3");
 assertEquals("15", sheet.get("B1"));
 }
 }

12Copyright © 2004 Clarkware Consulting, Inc.

Green Is Good!

13Copyright © 2004 Clarkware Consulting, Inc.

Benefits of Automated Tests

• Increase in value over time

• Automated change detectors

• Refactoring courage

• Executable documentation

14Copyright © 2004 Clarkware Consulting, Inc.

2. Stop Debugger Testing

• It’s not a regression testing tool

• Mental assertions are error-prone and boring

• Debugger time isn’t recyclable

• Debugger sessions aren’t reusable by others

15Copyright © 2004 Clarkware Consulting, Inc.

Is This Time Well Spent?

16Copyright © 2004 Clarkware Consulting, Inc.

Automated Tests Scale

• Codify debugger assertions in an automated test

• And listen to the pain in trying to do so

• It’s really trying to tell you something

• Then run the tests at the push of a button

17Copyright © 2004 Clarkware Consulting, Inc.

3. Assert Your Expectations

• Test-driven development recipe:

1. Write new code only after an automated test has failed

2. Refactor to keep the code clean

•
• Don’t you already have a mental test?

• TDD formalizes and refines that thought process

18Copyright © 2004 Clarkware Consulting, Inc.

Put A Stake in the Ground

 import junit.framework.TestCase;

 public class ShoppingCartTest extends TestCase {

 public void testAddItems() {
 ShoppingCart cart = new ShoppingCart();
 cart.addItems("Snowboard", 1);
 cart.addItems("Lift Ticket", 2);
 cart.addItems("Snowboard", 1);
 assertEquals(4, cart.itemCount());
 }
 }

19Copyright © 2004 Clarkware Consulting, Inc.

Code Toward the Goal

• Now make the test pass

• Simplest possible solution

• Then refactor and re-run the test

• Writing tests afterwards isn’t nearly as fun!

• And it’s usually more difficult

20Copyright © 2004 Clarkware Consulting, Inc.

Question?

Doesn’t that mean I spend

a lot of time writing tests?

Yes!

But the rest of the time you’re

making those tests pass.

21Copyright © 2004 Clarkware Consulting, Inc.

4. Think of It as Design

• TDD is a design technique

• Clarifies your thinking

• Validates design decisions

• Encourages loose coupling

• Pay careful attention to difficulties writing tests

• If code is difficult to test, it’s difficult to use

22Copyright © 2004 Clarkware Consulting, Inc.

Design Decision

 public void testGetItem() {

 ShoppingCart cart = new ShoppingCart();
 cart.addItems("ISBN123", 1);

 Iterator items = cart.items();
 Product item = (Product)items.next();

 assertEquals("Confessions of an OO Hired Gun",
 item.getDescription());
 assertEquals(9.95, item.getUnitCost(), 0.0);
 assertEquals(1, item.getQuantity());
 }

23Copyright © 2004 Clarkware Consulting, Inc.

Breaking Dependencies

24Copyright © 2004 Clarkware Consulting, Inc.

Design By Interface

 public interface Catalog {

 public void addProduct(String key, Product p);

 public Product getProduct(String key);

 }

25Copyright © 2004 Clarkware Consulting, Inc.

Decouple By Composition

 public void testGetItem() {

 Catalog catalog = new InMemoryCatalog();
 catalog.addProduct("ISBN123",
 new Product("Confessions of an OO Hired Gun", 9.95));

 ShoppingCart cart = new ShoppingCart(catalog);
 cart.addItems("ISBN123", 1);

 Iterator items = cart.items();
 Product item = (Product)items.next();

 assertEquals("Confessions of an OO Hired Gun",
 item.getDescription());
 assertEquals(9.95, item.getUnitCost(), 0.0);
 assertEquals(1, item.getQuantity());
 }

Green

26Copyright © 2004 Clarkware Consulting, Inc.

5. Build Safety Nets

• Legacy code without tests is a liability

• Be pragmatic about scope

• Use existing safety nets

• Makes refactoring safe

27Copyright © 2004 Clarkware Consulting, Inc.

6. Learn by Checked Example

• Write checked examples to learn APIs

• Safe context for learning

• Builds up a knowledge base

• Regression suite for new releases

28Copyright © 2004 Clarkware Consulting, Inc.

Lucene Search Test

public class LuceneLearningTest extends TestCase {

 public void testIndexedSearch() throws Exception {

 Directory indexDirectory = new RAMDirectory();
 IndexWriter writer =
 new IndexWriter(indexDirectory, new StandardAnalyzer(), true);

 Document document = new Document();
 document.add(Field.Text("contents", "Learning tests build confidence!"));
 writer.addDocument(document);
 writer.close();

 IndexSearcher searcher = new IndexSearcher(indexDirectory);
 Query query = new TermQuery(new Term("contents", "confidence"));

 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 }
}

29Copyright © 2004 Clarkware Consulting, Inc.

Lucene Knowledge Base

public class LuceneLearningTest extends TestCase {

 private IndexSearcher searcher;

 public void setUp() throws Exception {
 Directory indexDirectory = new RAMDirectory();
 IndexWriter writer = new IndexWriter(indexDirectory, new StandardAnalyzer(), true);
 Document document = new Document();
 document.add(Field.Text("contents", "Learning tests build confidence!"));
 writer.addDocument(document);
 writer.close();
 searcher = new IndexSearcher(indexDirectory);
 }

 public void testSingleTermQuery() throws Exception {
 Query query = new TermQuery(new Term("contents", "confidence"));
 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 }

 public void testBooleanQuery() throws Exception {
 Query query = QueryParser.parse("tests AND confidence", "contents", new StandardAnalyzer());
 Hits hits = searcher.search(query);
 assertEquals(1, hits.length());
 }
}

30Copyright © 2004 Clarkware Consulting, Inc.

Ruby Knowledge Base

 class RubyArrayTest < Test::Unit::TestCase

 def testPushPopShift
 a = Array.new
 a.push("A")
 a.push("B")
 a.push("C")
 assert_equal(["A", "B", "C"], a)
 assert_equal("A", a.shift)
 assert_equal("C", a.pop)
 assert_equal("B", a.pop)
 assert_equal(nil, a.pop)
 end

 def testCollect
 a = ["H", "A", "L"]
 collected = a.collect { |element| element.succ }
 assert_equal(["I", "B", "M"], collected)
 end

 end

31Copyright © 2004 Clarkware Consulting, Inc.

7. Corner Bugs

• Before you can fix a bug, you must find it

• You have expectations for how the code should work

• The bug is fixed when the test passes

• And it’s cornered for life

32Copyright © 2004 Clarkware Consulting, Inc.

8. Expand Your Toolbox

• Be creatively lazy about building testing tools

• The open source world is teeming

• Pick the right tool for the job

33Copyright © 2004 Clarkware Consulting, Inc.

How Do I Test This?

 public class ShoppingServlet extends HttpServlet {

 ...

 public void
 addRequestedItem(HttpServletRequest request, ShoppingCart cart) {

 String itemId = request.getParameter("item");
 String quantity = request.getParameter("qty");
 cart.addItem(itemId, new Integer(quantity).intValue());
 }

 ...
 }

34Copyright © 2004 Clarkware Consulting, Inc.

Mock Objects Framework

• http://mockobjects.com

• Core framework with expectation classes

• Specialized JDK and J2EE frameworks (e.g. servlets)

35Copyright © 2004 Clarkware Consulting, Inc.

Mocking Servlets

 public void testAddRequestedItem() throws Exception {

 ShoppingServlet servlet = new ShoppingServlet();

 MockHttpServletRequest request = new MockHttpServletRequest();
 request.setupAddParameter("item", "Snowboard");
 request.setupAddParameter("qty", "1");

 ShoppingCart cart = new ShoppingCart();
 servlet.addRequestedItem(request, cart);

 assertEquals(1, cart.getItems().size());
 Product item = cart.getItem("Snowboard");
 assertEquals("Snowboard", item.getId());
 assertEquals(1, item.getQuantity());
 }

Green

36Copyright © 2004 Clarkware Consulting, Inc.

Don’t Stop There!

• JUnit is a framework, not an application

• NUnit

• CppUnit

• TestUnit (Ruby)

• HttpUnit

• XMLUnit

• Google is a programmer’s best friend

37Copyright © 2004 Clarkware Consulting, Inc.

9. Make It Part of Your Build Process

• Capitalize on the testing investment

• Build should fail if any test fails

• Instills confidence in the build

38Copyright © 2004 Clarkware Consulting, Inc.

Batch Testing with Ant

 <target name="test" depends="compile-tests“>

 <junit haltonfailure=“true">

 <batchtest>
 <fileset dir="${build.dir}"
 includes="**/*Test.class" />
 </batchtest>

 <formatter type="plain" usefile="false" />
 <classpath refid=“test.classpath" />

 </junit>

 </target>

39Copyright © 2004 Clarkware Consulting, Inc.

Here’s Your Build Process

ant test

40Copyright © 2004 Clarkware Consulting, Inc.

Radiate Confidence

41Copyright © 2004 Clarkware Consulting, Inc.

Schedule The Build

• CruiseControl or Anthill

• Prevents integration hell

• Flushes out dependencies (”works on my machine”)

42Copyright © 2004 Clarkware Consulting, Inc.

Build Status

43Copyright © 2004 Clarkware Consulting, Inc.

10. Buddy Up

• It’s more fun that way

• You can cover more ground

• Keep each other accountable

• Share experiences

44Copyright © 2004 Clarkware Consulting, Inc.

11. Travel With a Guide

• You and your buddy may stumble into same pitfalls

• A guide can keep you from getting bogged down

• Customized training is best

• Find a good mentor

45Copyright © 2004 Clarkware Consulting, Inc.

12. Practice, Practice, Practice

• Don’t expect it to be easy

• Don’t expect to test everything

• Write one good automated test a day

• Next week you’ll have 5!

• Run all your tests when you change code

46Copyright © 2004 Clarkware Consulting, Inc.

And Before Long...

47Copyright © 2004 Clarkware Consulting, Inc.

Summary

• Testing helps me write better software, faster

• You’re already doing all this, manually

• Testing will improve your design skills

• What are you waiting for?

48Copyright © 2004 Clarkware Consulting, Inc.

Travel With A Guide

Customized Training and Mentoring

http://clarkware.com
mike@clarkware.com

49Copyright © 2004 Clarkware Consulting, Inc.

Articles and Books

• A Dozen Ways to Get the Testing Bug in the New Year
 http://today.java.net/pub/a/today/2004/01/22/DozenWays.html

• JUnit Primer
 http://clarkware.com/articles/JUnitPrimer.html

• Pragmatic Unit Testing
 by Dave Thomas and Andy Hunt
 http://pragmaticprogrammer.com

• Test-Driven Development By Example
 by Kent Beck (Addison-Wesley, 2002)

• Test-Driven Development: A Practical Guide
 by Dave Astels (Prentice Hall, 2003)

• Java Development With Ant
 by Erik Hatcher (Manning, 2002)

50Copyright © 2004 Clarkware Consulting, Inc.

Discussion

Thanks and have fun!

(Your input is valuable to me.)

