
Page 1-1Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-1

Java and UML:
A Practical Application

Presented by

Paul R. Reed, Jr.

of

Jackson-Reed, Inc.

www.jacksonreed.com
prreed@jacksonreed.com

6660 Delmonico Dr.
Suite D-508

Colorado Springs, CO. 80919
888-598-8615 or 719-598-8615

Page 1-2Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-2

Presenter Introduction

Page 1-3Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-3

Presentation Objectives

• Understand the principal components of the
Unified Modeling Language (UML)

• Understand which UML diagrams give you the
biggest payback

• Review the role of a process when utilizing the
UML

• Discuss the Use Case Design Pattern

• Discuss the Model 2 architecture in non-EJB
solutions

• Discuss the Model 2 architecture in EJB solutions

This course takes a pragmatic approach to developing software with an Object-
Oriented perspective. It is necessary, initially, to explore the benefits of Object-
Oriented software development. It is also necessary to distinguish between Object-
Oriented Design and our more structured brethren, Structured Analysis and Design.
The Unified Modeling Language (UML) is not new. It has been in the making for over
15 years. It combines the best work of many practitioners. This course provides a
rigorous review of the UML, its diagrams and its constructs.
The UML would be a failure without a companion process model. Remember that a
process model dictates “when we do what…and in what sequence”. The UML is just a
notation. It is a way to describe the application domain. In this course, you will learn a
representative approach to applying process to the application analysis, design and
development process.
The UML can’t be everything to everyone. The UML purposely avoids platform specific
issues such as User Interface Design and Database Design. However, applications
wouldn’t be applications without either of these key components. This course covers
these areas and presents approaches for incorporating them into the application
analysis and design.

Page 1-4Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-4

Goals of the UML

• Provide users a ready-to-use, expressive visual
modeling language, so they can develop and
exchange meaningful models

• Provide extensibility and specialization
mechanisms to extend the core concepts

• Be independent of particular programming
languages and development processes

• Provide a formal basis for understanding the
modeling language

• Encourage the growth of the OO tools market

As will be noted later, the above goals are the cornerstone of the Unified Modeling
Language. The UML is meant to begin to attack the root of our existing software
dilemma, and that is to get the “blueprint” right. Just as Whitney found that firearms
couldn’t be built in mass production until the end-product was broken down into a
collection of component diagrams, the software solutions of today and the future must
also have relevant and meaningful diagrams.
The UML does just that. It provides a framework of 9 different diagrams that work
together to spell out the “blueprint” of the application challenge at hand.

Page 1-5Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-5

The UML is NOT

• A systems development lifecycle - it doesn’t
dictate the steps to follow to accomplish a
particular phase of a project (i.e., methodology
based)

• A software process model - it doesn’t dictate how
a project should flow through which stages (i.e.,
spiral, waterfall)

It is also key to note that the UML is just what it says, a modeling language. The UML
does not tell the project team when to do what. What are some the questions the UML
does not answer?
• When should I use which diagram?
• When should I not use a particular diagram?
• What is the recipe for successfully using the UML?
• Should we use incremental/iterative development or big bang?
• What is the translation of the diagrams into Relational Database design schemas ?
• What role does the company’s architecture play in translating the analysis into
design?
• Are there some diagrams that are better suited for analysis vs. design?
• Can I use UML diagrams to identify any issues dealing with distributed implementation
of both data and process?
• What indications do I look for in prioritizing high-risk elements of the project?
Not to worry, this course addresses these issues in the recommended process model.
Keep in mind that there are many process models available; some free, others for a
hefty fee.
WITHOUT A PROCESS…YOU WILL FAIL!!!!

Page 1-6Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-6

UML Components

• The UML is comprised of 9 different diagrams
• These diagrams describe the system along

different perspectives:
– Static (use case, class, package)
– Dynamic (use case, sequence, collaboration,

state, activity)
– Architectural (component, deployment)

• The UML does not dictate when something
should be done or in what context (e.g. analysis
vs design)

The UML puts forward 9 different diagrams. These diagrams are broken into different
perspectives:
• Static

• Use Case Diagram (diagram itself)
• Class Diagram
• Package Diagram

• Dynamic
• Use Case Diagram (underlying pathways)
• Sequence Diagram
• State Diagram
• Collaboration Diagram
• Activity Diagram

• Architectural
• Component Diagram
• Deployment Diagram

At a minimum, every project will produce Use Case, Class and Sequence diagrams.

Page 1-7Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-7

What the UML Doesn’t Address

• The UML intentionally doesn’t address:

– Graphical User Interface

– Architecture mapping

– Object distribution

– Object to Relational Mapping (if needed)

– Network impact analysis

Some practitioners fault the UML because it doesn’t address certain aspects of the
development life cycle. Some examples:
What about process and data distribution?
What about relational database design?
What about graphical interface design?
Remember, that one of the early goals of the UML was to be flexible and extensible.
The UML would be tied to processor and platform issues if it were to deal with the
above questions. It is important to note that the additional tools presented in this
seminar draw directly from the output of the UML models reviewed in this course. The
additional tools are all complementary to the UML, not evolutionary or revolutionary.

Page 1-8Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-8

Sound Familiar

“We’re really on a tight schedule
and just don’t have time for full-

blown requirements”
Anonymous Manager

Page 1-9Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-9

Sound All Too Familiar

“A Development Process only
produces paper and gets in the

way of the real reason we’re
here – to code ”

Anonymous Developer

Page 1-10Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-10

Why Is It Then, That?

• The Standish Group finds only 16% of projects
today are completed on time, on budget, and
inclusive of all promised functionality. The
remainder are either considered “project
challenged” or “project impaired”

• The ESPITI organization traced 54% of “Major
Software Problems” to either poor requirements
or lack or requirements management

Source: Standish Group
European Software Process Improvement Training Initiative

Page 1-11Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-11

Iterative and Incremental

Initial risks
Initial project scope

Revise Project Plan

Define increments to address
the highest risks

Plan and develop the
increment

Assess the increment

Risk Mitigation Plan
Initiated and Implemented

Revise risk assessment
and mitigation plans

In an iterative and incremental life cycle, development proceeds as a series of iterations
that clarify the problem, leading to a deliverable, or an increment, of the final system.
Iteration relates to refinement, while increment relates to added functionality.
Each iteration consists of one or more of the following process components:
requirements capture, analysis, design, implementation and test. The developers don’t
assume that all requirements are known at the beginning of the life cycle; indeed,
change is anticipated throughout all the phases. The result of a successful iteration is
another increment of the system.
This type of life cycle is called “risk-mitigating”. Technical and business risks are
assessed and prioritized early in the life cycle, and are revised during the development
of each iteration. Risks are attached to each iteration, so that successful completion of
the iteration alleviates the risks attached to it. The releases are scheduled to ensure
that the highest risks are tackled first.
Building the system in this fashion exposes and mitigates the risks of the system early
in the life cycle. The result of this life cycle approach is less risk, coupled with minimal
investment.

Page 1-12Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-12

The Unified Process

Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Management

Requirements

Elaboration TransitionInception Construction

Project Management

The process model for RUP initially looks confusing.
The easiest way to view the process is to think of phases as chunks of work, resulting
in the completion of a milestone (i.e., Inception: Lifecycle Objective). The workflows
represent activities (schedulable work) that we iteratively apply to complete an iteration.
For instance, If you view the vertical Inception phase, scan below it and you will see
varying degrees of importance placed on each of the workflows. You see more
emphasis in activities that are related to business modeling and requirements than you
do in analysis and design, implementation and test.
However, you could have some activities being applied in these workflows during
inception if you were doing some high-level prototyping perhaps just to stimulate ideas
(IKIWISI – I’ll know it when I see it).
There are two types of project plans in RUP. One is a macro plan based on the phases,
called the phase plan. The other are more micro plans and there will be one for every
iteration, called the iteration plans.
A project will have have only one phase plan but many individual iteration plans.

Page 1-13Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-13

Nine Diagrams - Three Are Pivotal

Establishes
Requirements

Use Case
Establishes
Classes and
Associations

Class

Models Use Case
Pathways as

Collaborating Objects

Interaction (Sequence or Collaboration)

‡

Don’t think that you will never use other diagrams, but, from a practical perspective, the
most mileage comes from those represented above.
Remember, most visual modeling tools today only generate the code skeletons from
the class diagram.

Page 1-14Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-14

The UML Means Traceability

Project
Features

Must take Orders
online

Process
Order

Basic Course or “Happy Path”
Process order with existing
customer using a PO

Event
List

Customer calls to
place Order using a

Purchase Order Number

Associations
between Classes

that reflect
the Order System

Class

UCProcessOrder
Controller

placeOrder()
Objects collaborating to

implement the
Pathway defined in the

Process Order
Use Case

Sequence/Collaboration

‡

Many times we wish we could trace a business requirement to its eventual realization
as a software unit. Other times, it would be beneficial to trace a software unit back to its
business requirement. With the UML, there is finally a method to the madness of
ensuring traceability.

Page 1-15Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-15

Use Case Design Pattern

Session Bean

Operation1()
Operation2()
Operation3()

Use Case Pathway s
Class1

Class4

Class2

Class3

1

2

3

:Object1 :Object4:Object3:Object2

1

2

3
4

5

Source: Paul R. Reed, Jr. from “Developing Applications with Java and UML”,
Addison-Wesley, 2002.
The above use case design pattern is reflecting an architecture of Enterprise Java
Beans. However, it applies to any architecture you choose. There is an order to the
progression of mapping to components: (1) From use-cases we find our entity classes
(2, 3). (4) From the use-cases we create interaction diagrams (e.g.,
sequence/collaboration) that model our classes now acting as living objects sending
messages to one another with the sole purpose of accomplishing the goal of the use-
case pathway. (5) For each use-case, a use-case controller will be implemented as
either an SFSB or an SLSB. This use-case controller bean will contain operations that
implement the orchestration logic to carry out an individual interaction diagram. Again,
these map directly to the use-case pathways.
This pattern also quite successfully predicts how transaction boundaries are
distinguished. Many times I see projects struggle with where to place the logic that
controls the boundaries for the pathways through the application. With the use case
pattern the guesswork is removed. All transaction demarcation occurs within the use
case control classes, ALWAYS. In the case of EJB applications, each method within
each use case session bean is assessed as to its need for a transaction. All update-
oriented operations in the session beans will be marked “RequiresNew”. All other
operations in the session beans will be marked “Supports”. All entity beans can be
marked at the bean level as “Supports”.

Page 1-16Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-16

Class Types and Interactions

User Interface
Controller

Use Case
Controller

Entity
Class 1Deals with all of

the UI aspects of
the application

Implements the
pathways of the
use cases

Business logic

Client Server

‡

Entity
Class 2

Entity
Class 3

Rich but Light Client

Using and applying the concepts of boundary (interface), controller, and entity (domain)
classes renders the application’s architecture much more resilient.
Typically, the GUI-specific logic and the user interface controllers will reside on the
client. The use case controller and entity classes will be deployed on an application
server.

Page 1-17Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-17

Class Types and Interactions

User Interface
Controller

Use Case
Controller

Entity
Class 1

Business logic

Client Server

‡

Entity
Class 2

Entity
Class 3

Ultra-Light Client

Using and applying the concepts of boundary (interface), controller, and entity (domain)
classes renders the application’s architecture much more resilient.
Typically, the GUI-specific logic and the user interface controllers will reside on the
client. The use case controller and entity classes will be deployed on an application
server.

Page 1-18Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-18

Class Types and Interactions

User Interface
Controller

Use Case
Controller

Entity
Class 1

Business logic

Client Server

‡

Entity
Class 2

Entity
Class 3

Ultra-Light Client

Using and applying the concepts of boundary (interface), controller, and entity (domain)
classes renders the application’s architecture much more resilient.
Typically, the GUI-specific logic and the user interface controllers will reside on the
client. The use case controller and entity classes will be deployed on an application
server.

Page 1-19Section One: OOAD Using The UML - © Jackson-Reed, Inc.

Who would have thought five years ago that a thin client would be the rage and that
the client of choice would be a browser? Many client/server applications were
thrown into the “legacy” bucket when this occurred because of the tight coupling
between the presentation and business logic.

© Jackson-Reed, Inc. 1-19

Smart Partitioning - Web

Network

Browser
Application

Server

Using http the browser
submits form input to the

web server
Server Receives
“logical” request
for services from

web server

Database
Server

Web
Server

Using CGI,Java Server Pages, Servlets, or Active Server Pages, the
Web server initiates the service request

Page 1-20Section One: OOAD Using The UML - © Jackson-Reed, Inc.

With the advent of new presentation technologies, it becomes even more important
to separate the layers. With this model, the business logic doesn’t care who
requests its services.
In the case above, Wireless Access Protocol (WAP) is used to send requests to a
WAP server which then talks to the business layer. The powerful statement here is
that the same application server can be serving up traditional client-centric
applications, web applications and wireless applications.

© Jackson-Reed, Inc. 1-20

Smart Partitioning - Wireless

Network

Application
Server

Using WAP that submits
input to a

WAP server

Server Receives
“logical” request
for services from

web server

Database
Server

WAP
Server

Using a middleware
API such as RMI, IIOP, or DCOM, a request

Is made for “services”

Page 1-21Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-21

UML and a Better Architecture

User Interface

Business
Rules

Data
Translation

Data
Access

Client

Server

Server

Server

‡

Remember that components are the realization of the classes that have been nurtured
through the analysis and design process. Depending on the language and operating
system that will implement the design, a component may implement either one class, or
hundreds of classes.
In the Microsoft world, components can be EXEs and DLLs; in the case of Java, they
may be just “.class” files.

Page 1-22Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-22

GOF - Factory Pattern

• This pattern abstracts the creation objects that
aren’t known until runtime

• Candidates for usage are in situations where if-
then-else logic is being used to determine a
service or functional component to include

OrderDAOCS OrderDAOOracle
store()
create()

store()
create()

OrderDAO
create()
load()
store()
remove()
findByPrimaryKey()

<<interface>>

OrderDAOFactory
getDAO()

creates

creates

OrderEJB
OrderDAO orderDAO

OrderDAOImpl
create()
load()
store()
remove()
findByPrimaryKey()

Factory is a classic pattern to mask the creation of objects. Polymorphism isn’t
appropriate here as it is only usable “after” objects are created. In this case, we don’t
know until runtime which object to create.
In the example above, the client needs to be able talk to a database. However, the
particular database back-end is unique at each location (common in packaged software
applications like PeopleSoft or SAP). To avoid a cascading if statement to cycle through
which database API to use, the Factory pattern is employed to provide a level of
abstraction. DAOIF is an interface which defines four operations.
Here is what happens:
• Client (OrderEJB) asks OrderDAOFactory to return an object which implements the
OrderDAO interface so it can do database activities. The returned object is stored in the
Client’s orderDAO local variable which is of type OrderDAO.
•OrderDAOFactory determines which database API to use (either via a parameters file
or through a JNDI lookup) unique to this location.
•OrderDAOFactory instantiates either the concrete class OrderDAOCS or
OrderDAOOracle and returns this reference typed as OrderDAO.
•Now the Client messages to its local orderDAO attribute requesting it to create(),
load(), store(), retrieve(), remove(), findByPrimaryKey() and the appropriate concrete
class (OrderDAOCS, OrderDAOOracle) actually receives the messages.

Page 1-23Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-23

GOF – Command Pattern
• This pattern creates classes for each unique

“action” that a program must handle.

• Candidates for usage are in situations where an
action occurs and if-then-else logic is being used
to carry out the work

CustInquiry
doIt()

Action
doIt()

<<interface>>

CustAdd
doIt()

CustServlet
<<Http_Servlet>>

CustForm
<<HTML>>

doGet()
doPost()

HashTable

put()
get()

init()

The command pattern is very applicable in both GUI applications (implementing
do/undo scenarios) and in the web. In the case of the web, it is a very powerful
technique to simplify servlets and the processing of unique actions instigated via HTML
input. The premise is that every action (command) that a servlet must respond to has a
corresponding class defined for it that implements the Action interface. The Action
interface has one operation, called doIt(). Every unique command implements this
interface. The doIt() operation is typically mapped, one-to-one, with each use case
pathway. Here is what happens:
Html form posts to the servlet, CustServlet its input. One hidden field that is posted
along with user input is an “Action” field that contains a hardcoded action id.
The servlet issues a get() on a hashtable using the “Action” id as the key and retrieves
its related object, typed as an Action object. The hashtable can be built one of two ways
1). in the init() method of the Servlet (downside is that the action id/object pairs are
hardcoded). 2). As servlet initialization parameters or as an external XML file that is
traversed. The benefit of option 2 is that new actions can be added that the servlet must
support without recompiling any code.
CustServlet invokes the doIt() operation on the object returned from the hashtable.

Page 1-24Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-24

Command Pattern - Framework
• The “struts” framework from the Jakarta group delivers a

pre-cooked command pattern framework ideal for routing
request specific actions to the appropriate handler

• Candidates for usage are in situations where an action
occurs and if-then-else logic is being used to carry out the
work

CustInquiry
execute()

Action
execute()

<<Http_Servlet>>

CustAdd
execute()

<struts-config>
<action-mappings>

<action
path=“/inquiry”
type=“CustInquiry” />

<action
path=“/add”
type=“CustAdd” />

</action-mappings>
</struts-config>

With struts, the control servlet comes in the framework. All the developer has to do is
add the entries to the STRUTS-CONFIG.XML file and build the handler class with
subclasses the “Action” class provided by Struts. In the future, when a new action
needs to be supported, no recompiles are required. Simply add the entry to the XML file
and install the new subclass.

Page 1-25Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-25

Model/View/Controller - Extended

• The Model represents the entity classes with their
contained attributes and behavior

• The View represents the external representation of
information found in the model

• The User Interface Controller acts as the broker of external
stimulus between the View and the Use Case Controller

• The Use Case Controller orchestrates the messaging as
designed in the sequence/collaboration diagrams. These
“interaction” diagrams are a direct mapping to the
pathways found in the use cases

The two controllers are important to further isolate the application from future change.
The use interface controller translates all the GUI interaction aspects of the Actor’s
session into technology neutral requests. That is to say, someone entering a Customer
Id into a form and clicking the submit button must be repackaged into a message to
some object to do some work in retrieving the Customer.
The use case controller contains the operations that implements the messaging to all
the entity classes to satisfy the goal of the actor. It is also the use case controller that
starts and ends transactions. They govern the concept and management of the “unit of
work”.

Page 1-26Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-26

Java Server Pages – Model 1

• Model 1 was the initial technology use of Java
Server Pages in Web architectures

• HTML is posted to JSP pages which not only
provided View support but also acted as the
controller

• This will lead to bloated JSP pages and a
component that has very low cohesion

Customer CustJSP
<<JSP_Servlet>>

CustForm
<<HTML>>

doGet()
doPost()
init()
service()

Remember that a Java Server Page is compiled into a Servlet at runtime. Notice that
the stereotype on the CustJSP is <<JSP_Servlet>> to reinforce this. The difference to
the developer is that they have no knowledge of the manipulation of the Servlet
operations.
JSPs in the Model 1 scenario can also message to both Java Beans as well as
Enterprise Java Beans. The biggest negative of the Model 1 approach is that control
logic and display logic (Controller/View) are commingled.

Page 1-27Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-27

Java Server Pages – Model 2

• Model 2 is the current technology architecture
used on the Web today

• HTML is posted to a Servlet (user interface
controller) which then messages to a Java Bean
or Session EJB (use case controller) to satisfy
the goal of the actor

• Each component is highly cohesive

Model 2 is by far the most common JSP architecture found today.
The next few slides show example scenarios.

Page 1-28Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-28

Model 2 with Java Beans

Java
Server
Page

Servlet

HTML
Form

Java Bean
<<Entity>>

Java Bean
<<Entity>>

Java Bean
<<Entity>>

Java Bean
<<Controller>>

1

2

3

4

5

UML Component Diagram

Source: Paul R. Reed, Jr. from “Developing Applications with Java and UML”,
Addison-Wesley, 2002.

1. Html form requests a resource which is mapped to a Servlet.
2. The Servlet instantiates a use case controller class (Java Bean). The Servlet, based

on the “action” requested by the form, sends a message to the use case controller
class.

3. The message invoked in the use case controller class implements the messaging
outlined in the sequence/collaboration diagrams.

4. A representation (these may be Value objects which attribute-only objects
representing information to be displayed in a display neutral format) of what is to be
displayed finds its way back to the Servlet as a result of the work done by the use
case controller. This object or objects are inserted into the request scope of the
Servlet. The Servlet then forwards the request to the appropriate Java Server Page.

5. The Java Server Page, using the information recently placed in the Servlet’s request
scope, formats a return page bound for the requesting browser.

Page 1-29Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-29

Model 2 with Enterprise Java Beans

Java
Server
Page

Servlet

HTML
Form Entity Bean

Session Bean
<<Controller>>

1

2

3

4

5

EJB

EJB

Entity Bean
EJB

Entity Bean
EJB

UML Component Diagram

Source: Paul R. Reed, Jr. from “Developing Applications with Java and UML”,
Addison-Wesley, 2002.

1. Html form requests a resource which is mapped to a Servlet.
2. The Servlet instantiates a use case controller class (Session EJB). The Servlet,

based on the “action” requested by the form, sends a message to the use case
controller class.

3. The message invoked in the use case controller class implements the messaging
outlined in the sequence/collaboration diagrams.

4. A representation (these may be Value objects which are attribute-only objects
representing information to be displayed in a display neutral format) of what is to be
returned finds its way back to the Servlet as a result of the work done by the use
case controller. This object or objects are inserted into the request scope of the
Servlet. The Servlet then forwards the request to the appropriate Java Server Page.

5. The Java Server Page, using the information recently placed in the Servlet’s request
scope, formats a return page bound for the requesting browser.

Page 1-30Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-30

MVC - The Web and Java

rltnEntry

<<html view>>

RemulakServlet
<<UI Controller>> rltnInquiry

<<jsp
view>>

CustomerBean

<<model>>

UCMaintainRltnshp
<<UC Controller>>

CustomerDAO
<<model>>

rltnInquiry
<<html view>>

Source: Paul R. Reed, Jr. from “Developing Applications with Java and UML”,
Addison-Wesley, 2002.
This is an example of an MVC pattern in practice for a web application.
The dependency relationship between RemulakServlet and the rltnInquiry() JSP is on
the return trip back to the browser. Note that with a well-designed MVC architecture,
simply changing the outbound JSP page to something else, perhaps one that returns
Wireless Markup Language (WML) bound for a wireless PDA, would require absolutely
no changes to the controller or the model components. They are none the wiser. Their
role is simply to return a display-neutral object representing the customer. It is the role
of the view to transform that object into something desired by the user.
Notice that there are two types of controllers in our architecture: a user interface
controller and a use-case controller. The user interface controller is responsible for
dealing with unique interface architecture (e.g., Web, wireless, voice response unit).
The use-case controller is responsible for implementing the pathways defined in the
use-cases and eventually modeled by sequence diagrams. The use-case controller
doesn’t care who requests its services or what technology ultimately delivers it.

Page 1-31Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-31

Single Use Case Per Servlet

• One Servlet per use case is a more natural mapping of
components

• Traceability is enhanced should the functionality in the use
case change in the future

• This allows high cohesion and lower levels of regression
testing should the application change in the future

Servlet UC #1

Single use case per Servlet is a sound design strategy. It allows for future growth that
may be transparent, given the mechanism used to identify the request through the
Servlet.

Page 1-32Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-32

Multiple Use Cases Per Servlet

• Several pathways from several use cases can be mapped to
the same Servlet

• This reduces the number of objects that must be coded and
managed

• This can lead to low cohesion and higher levels of
regression testing should the application change in the
future

Servlet

UC #1

UC #3

UC #2

The designers must be careful of the “100 pound Servlet” syndrome. This is when the
Servlet becomes bloated with operations and difficult to manage and maintain.

Page 1-33Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-33

Using Action Objects and XML
• It is feasible to have multiple use case per Servlet if the

Servlet uses action objects implementing the Command
pattern

• To add a new use case pathway requires only a new action
class to deal with the functionality

• An XML stream can be used to define the action/class
mapping allowing even further flexibility

Servlet

UC #1

UC #3

UC #2

The Command Pattern (reviewed earlier) provides a level of abstraction making it much
easier to add new functionality to the application in the future.
Action objects remove the need for this in your Servlets:

if ("Customer Inquiry".equals(action)) {
doRltnCustomerInquiry(request, response);
}

else if ("New Customer".equals(action)) {
doRltnCustomerNew(request, response);
}

else if ("Edit Customer".equals(action)) {
doRltnCustomerEdit(request, response);
}

else if ("Delete Customer".equals(action)) {
doRltnCustomerDelete(request, response);
}

else {
response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);
}

Page 1-34Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-34

Value Objects

• Server-side beans that may travel across the network to
other servers in the same complex, can damage
performance due to singleton get/set operations on
attributes

• Create a proxy class that only contains attribute values and
get/set operations

• These classes contain no business logic
• The main mission is to reduce network traffic by passing

the object image in its entirety

Customer CustomerValue

Value objects are quite popular in the Enterprise Java Bean world. They can vastly
improve the performance of the container product (I.e., BEA Weblogic, IBM
Websphere) by reducing the overhead of communicating with other objects.

Page 1-35Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-35

Data Access Objects

• These objects encapsulate all the Structure Query
Language (SQL) logic necessary for an entity class to carry
out work on behalf of some interested client that requires
data manipulation

• In the case of Enterprise Java Beans (EJB), these objects
are only necessary if Bean Managed Persistence (BMP) is
used. With Container Managed Persistence (CMP), there is
no SQL to write

DataAccess
insertObject()
updateObject()
deleteObject()
findByPrimaryKey()
findByName()

<<interface>>

Customer
DataAccess dbDAO

CustomerDAO

insertObject()
updateObject()
deleteObject()
findByPrimaryKey()
findByName()

Data Access Objects are the SQL workhorse in the design. Typically, there is one DAO
class for each entity class. In these classes would be found all the different types of
SQL Commands (i.e., Insert, Update, Delete, Select) for the underlying table.

Page 1-36Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-36

The Architectural Prototype

Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration Management

Requirements

Elaboration TransitionInception Construction

Project Management

Produced at the
end of the first

iteration in
Elaboration

No Hard Architecture Decisions Upon Completion

The Architectural Prototype is critical to a projects success. It comprises all use case
pathways that are deemed “architecturally significant”. Upon the completion of this
milestone, there should be no hard architecture decisions to make.

Page 1-37Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-37

Architectural Prototype: EJB
Impact

• ALWAYS use a 100% CMP approach to flesh out the
design model for the architectural prototype
– Stabilizes relationships and associations
– Verifies integrity
– Identifies coupling and cohesion issues

• ALWAYS prototype a selection of set-oriented use
case pathways using Session Beans

• ALWAYS prototype a selection of batch-oriented use
case pathways

• ALWAYS try to avoid Stateful Session Beans (SFSB),
opting for utilization of HTTPSESSION object

Page 1-38Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-38

Finding Architecturally Significant
Requirements

• Find Use Case pathways that touch these areas:

– New technology usage

– New organization processes

– Temporal or timer based processing

– Batch processing

– Multi-panel interactions requiring state management across
panels

• Don’t select the “easy stuff” like reports and simple Create, Read,
Update, Delete (CRUD) use case pathways

Page 1-39Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-39

Focus on Risk

“If you don’t actively attack risks
in your project, they will actively

attack you”
Tom Gilb

Page 1-40Section One: OOAD Using The UML - © Jackson-Reed, Inc.

© Jackson-Reed, Inc. 1-40

Managing Change

“Change is not the Enemy,

Unmanaged Change is”

